第五百三十二章 西亚战神(1 / 3)

加入书签

“纳维-斯托克斯方程!”唐雪咬了咬牙道。

“你……你还真够狠啊!”

“你让我出的。”唐雪那张无暇的脸上露出一丝得意。

“相比起黎曼猜想、费马大定理、哥德巴赫猜想等全球知名的难题,纳维-斯托克斯方程的存在感很低,即使古地球时代,也很少会有人提及,最重要的原因就是,这个难题实在是不太好理解,尤其对于普通人而言,甚至名列榜首的P/NP问题普通人都可以揣摩到一些,但就是很难理解纳维—斯托克斯方程,这也是为什么民科很少触及这个问题的原因。”周森苦笑道。

“我也不要求你解开,你就随便说说!”唐雪感觉自己也有点过分。

“说几句还是可以的,人类史上对这个难题的描述其实就很晦涩难懂:‘起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。’这段话没头没尾,你甚至在这段话里都很难揣测出这个难题究竟描述的是什么问题,流露出一股玄学的问题。”

“具体点!”唐雪目光变得惊讶。

“纳维-斯托克斯方程并不是一个人提出来的,在古地球1775年,著名数学家欧拉,对,没有错就是数学界四大天王欧拉,他如今又来掺和流体力学了,他在《流体运动的一般原理》一书中根据无粘性流体运动时流体所受的力和动量变化从而推导出了一组方程。方程如:(axD+bxD+c)y=f(x),这是属于无粘性流体动力学中最重要的基本方程,是指对无粘性流体微团应用牛顿第二定律得到的运动微分方程,它描述理想流体的运动规律。奠定了理想流体力学基础。”

“粘性流体是指粘性效应不可忽略的流体。自然界中的实际流体都是具有粘性,所以实际流体又称粘性流体,是指流体质点间可流层间因相对运动而产生摩擦力而反抗相对运动的性质……可以说纳维-斯托克斯方程是众多科学家和工程师的推动下产生的,是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率和作用在液体内部的压力的变化和耗散粘滞力以及引力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。”

“在流体力学中,有很多方程,但很多方程都和纳维尔-斯托克斯方程有着联系,纳维-斯托克斯方程可以说描述了流体领域的大部分条件,当然了,该方程也有其适用范围,该方程只适用于牛顿流体。什么是牛顿流体呢?简单说就是:任一点上的剪应力都同剪切变形速率呈线性函数关系的流体。一般高黏度的流体是不满足这种关系的,说明牛顿流体和非牛顿流体有个简单的例子就是大家熟知的虹吸现象。在低黏度下,虹吸要进行下去,吸取口必须在页面以下,但非牛顿流体的高黏度流体下,吸取口哪怕高于液面,其虹吸依然能够进行,因为黏度太大了……”

“纳维-斯托克斯方程有那些应用?”唐雪一脸痴痴的看着周森问道。

“而对于工程应用来说,大部分情况还是处理牛顿流体,或者可以近似为牛顿流体。可以说,该方程在流体力学中起着基础性的作用,但也起着决定性的作用……尽管纳维-斯托克斯方程可以描述空间中流体的运动。纳维-斯托克斯方程式的解可以用到许多实际应用的领域中。比如可以运用到模拟天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析等等。”

“不过目前对于纳维-斯托克斯方程式解的理论研究还是不足,尤其纳维-斯托克斯方程式的解常会包括紊流。紊流又称湍流,是流体的一种流动状态。当流速很小时,流体分层流动,互不混合,称为层流,或称为片糖;逐渐增加流速,流体的流线开始出现波状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流;当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,称为湍流,又称为乱流、扰流或紊流。虽然紊流在科学及工程中非常的重要,但是紊流无序性、耗能性、扩散性。至今仍是未解决的物理学问题之一。”

“另外,许多纳维-斯托克斯方程式解的基本性质也都尚未被证明。因为纳维-斯托克斯方程依赖微分方程来描述流体的运动。不同于代数方程,这些方程不寻求建立所研究的变量的关系,而寻求建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。其中,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明,加速度是和内部压力的导数成正比的……”

“注意,人类数学难题中每个数学问题的官方陈述除了P/NP问题之外,都是由此领

↑返回顶部↑

书页/目录