第827章 地球轨道!七百丈法身!(2 / 3)
算法的关键。为此采用耦合拥塞控制算法,对各个子流联合控制,其表达式如下:(3)公式(3)中,MSS表示报文最大长度的常数,由协议设置,RTTi、PLRi分别表示子流所处路径的往返延迟和丢包率。第二,参数滤波处理,因为无线信道的多样性和时变特性,链路参数和路径有效带宽都会发生动态变化,且存在误差。为去除误差,对网络参数进行卡尔曼滤波器滤波,以获得精确的估计值。卡尔曼滤波是一种离散时间递推估计算法,通过对当前时刻的差分递推,根据当前状态的测量值、最后时刻的状态以及预测误差,计算出更精确的当前时刻状态作为输出。研究离散控制系统时,采用线性随机微分方程如下:(4)公式(4)中,xk、xk-1分别代表k时刻与k-1时刻的状态参数,Ak、Bk分别代表系统参数,在多模型系统中为矩阵,分别表示状态转移矩阵和输入矩阵,uk表示控制的输入参数,wk表示计算时的噪声。第三,带宽调度,假设一多径连接条子流,每个子流都彼此独立,每条子流占用一个路径进行数据传输,下面是它的调度过程如图3所示。依据上述过程对带宽调度,最后建立信道安全协议,以保证多元异构数据安全传输。安全协议由SSL协议、规则建立协议、隧道信息协议等构成。其中,SSL协议主要包括认证算法和加密算法两大部分,所有服务器端的数据包都将通过SSL协议进行加密,以保证消息通信的安全性,规则建立协议包括连接信息和消息识别,记录表匹配成功生成socket,转发布保证数据信息在VPN技术通道上的转发和应用。采用OpenVPN编程是实现隧道消息协议的主要方法。客户端发送请求命令消息,以建立与服务器的连接。通过连接后,服务器根据SSL协议将经过加密验证的数据信息写入隧道信息数据区,实现与客户端的数据交换和传输。信道安全协议结构如图4所示。在数据传输过程中,按照上述信道安全协议进行传输,以此完成基于机器学习的多元异构网络数据安全传输。
5实验对比
为了验证所设计的基于机器学习的多元异构网络数据安全传输技术的有效性,进行实验分析,并将文献[1]的异构网络中安全数据传输机制、文献[2]的基于异构网的一种数据安全模型做对比,对比三种系统的有效性。此次实验中的实验数据集如表1所示。通过上述采集的实验数据能够看出,实验选取的数据是越来越多的,从而更好的验证三种方法的有效性,主要对比三种方法的传输时延、数据传输中断情况以及链路丢包率,具体内容如下所示。
5.1传输时延对比
分别对比三种方法的传输时延,其对比结果如图5所示。通过分析图5发现,在谷歌公开数据集传输上,三种方法传输时延均较小,随着传输数据量的增加三种方法的数据传输时延都有所增加,但经过对比能够发现,此次研究的基于机器学习的多元异构网络数据安全传输技术传输时延最小,少于传统的两种方法。
5.2数据传输中断情况对比
分别对比应用三种传输技术后,数据传输中断情况,其对比结果如图6所示。通过图6能够发现,此次研究的传输技术发生数据传输中断情况最少,在几次实验中均少于传统两种传输技术。
5.3链路丢包率对比
分别采用此次研究的基于机器学习的多元异构网络数据安全传输技术与传统两种传输技术进行数据传输,三种方法的丢包率对比结果如图7所示。通过分析图7能够发现,传统的异构网络中安全数据传输机制的链路丢包率最高,高于基于异构网的一种数据安全模型与此次研究的传输技术。综上所述,此次研究的基于机器学习的多元异构网络数据安全传输技术较传统两种传输技术传输时延少,丢包率少。其原因在于该研传输技术预先对多元异构网络数据进行了预处理,并制定带宽调度方桉,建立了安全传输协议,从而提高了多元异构网络数据安全传输效果。
6结束语
本文设计了一个基于机器学习的多元异构网络数据安全传输技术,并通过实验验证此次研究技术的有效性。该技术能够提高数据传输的效率,还能够减少数据传输丢包率,实际应用意义较强。但由于研究时间的限制,此次研究的多元异构网络数据安全传输技术还存在一定的不足,为此在后续研究中,还需要进一步优化。
摘要:阐述虚拟化技术保证了信息使用的稳定性和流畅性,云存储技术保证了数据体分配的合理性,信息安全技术保证了大数据使用和浏览的安全性。
关键词:计算机系统,大数据,云存储,虚拟化。
0引言
计算机软件技术可以在较短时间内处理大量数据,采取一定的逻辑进行编辑分析,提出用户需要的有关数据信息,进行再加工处理,确定服从于用户需要的数据分析的有关数据内容。
1虚拟化技术
虚拟化技术是计算机软件技术的创新性技术,它能够在较短的时间内创造一个新的虚拟机位以供用户使用,虚拟化技术真正将信息化资源做到了合理利用,有效的配置软件资源与调动,合理分配计算机
↑返回顶部↑