第七百一十九章 来自麻省理工学院的邀请(1 / 2)

加入书签

“这道题的答案是n(2n+1)?”

张磊瞪大着眼睛,沿着陆舟的推导算下去,好像的确没错……

从出题道陆舟走上去,这才多久啊!

不由得内心里萌生出一种挫败感,太打击人了吧!

史蒂芬教授倒是对陆舟这个表现不感到意外,毕竟是陈可是将其天赋与陶哲轩一比的人。

“答案的确是n(2n+1)。”

见陆舟准备要回到位置上去,史蒂芬教授喊了一声。

“陆,我这里还有一道题目,不知道你敢不感兴趣。”

听到有题目,陆舟眼前一亮,转过身问:“什么题目?”

“我听陈说你在丢番图方程上有些研究?”史蒂芬笑了笑,说话的同时走上讲台,拿起粉笔。

“那我就给你出一道‘简单’的丢番图方程。”

陆舟就在讲台前一米处,眼神不移地望着黑板。

【如何计算x3+y3+z3=33的一组整数解?】

陆舟脸色却逐渐变得凝重。

有许多数学题看起来挺简单的,但问题通常都有非常复杂的解。

比如史蒂芬教授出的这道题目就是这般。

除了陆舟其他七名光华大学的学生都是一脸懵逼,也就只有郑天宇看着题目感到似乎在哪里看到过,可一时想不起来了。

张磊挠着头发,一脸的呆滞。

“这特么真的有答案???”

简直是无力吐槽了,张磊只感觉头皮发麻。

再看看小伙伴郑天宇,同样很茫然得样子。

其他没有名字的就更不用说了。

将所有人脸部变化都纳入眼球的史蒂芬教授脸色平静,他好奇地望着陆舟。

他想知道,这道题陆舟能够做得出来吗?

陆舟眉头紧锁,这道题的棘手出乎他的意料。

而且他也认出了史蒂芬教授出的这道题目。

这要往前溯源到【x3+y3+z3=3】这个方程式。

很多人肯定会想到【1、1、1】这个整数解,实际上还有第2组整数解,是【4、4、-5】。

但,会不会有第三组整数解呢?

1953年,数学家louismordell便提出这样的一个疑问。

有意思的是,这个看似没技术含量的问题,困扰了数学界很久,直到今日都没有解决。

再到1992年,又一个数学家rogerheath-brown在研究弱近似原则失效形式x3+y3+z3=kw3的零点密度问题时,提出了一个猜想:对于任意一个正数k?±4(mod9),丢番图方程k=x3+y3+z3有无穷多组整数解(x,y,z)。

【如果没学过初等数论的话,就把k?±4(mod9)看做k≠9n+4,也就是k≠9n+4或k≠9n+5】

每个k都有无穷多组整数解。

当前数学界在对于k小于100的情况下,除了k=3的第三组整数解以外,只有k=33、42没有找到整数解。

一个困扰数学界还没解决的问题,被史蒂芬教授拿出来做考题。

陆舟真的想问问对方:教授,那您知道答案吗?

他没有说,反倒精神格外振奋。

一道难倒全球数学界几十年的难题。

要是……被他解决了,岂不是很酷?

陆舟专心致志看着题目,大脑开始疯狂运转。

先要明白为什么数学家heath-brown的猜想中为什么要有k?±4(mod9)的条件。

已知任何一个整数都可以写作如下三种形式中的一种,3k,3k-1,3k+1,再分别计算它们的立方:

(3k)3=27k3

(3k-1)3=27k3-27k2+9k-1

(3k+1)3=27k3+27k2+9k+1

三者被9整除的余数分别为0,-1,1,所以对于任意整数x,有x3≡0,±1(mod9)。

再根据同余运算的基本性质,……(省略)……由此可知,当k≡±4(mod9)时,方程不存在整数解。

所以,在求解方程k=x3+y3+z3时,不需要考虑k≠9n+4或k≠9n+5的情况。

陆舟仍在继续思考,教室里陷入了一股寂静当中。

郑天宇、张磊等7名学生都在抓耳挠腮中,这问题都超纲了啊!

史蒂芬教授也只是笑而不语得站在一旁看着。

能解开这道题唯一的希望便是在陆舟的身上。

又过了几分钟,离下课时间不到10分钟了。

陆舟突然动了!

走到讲台前,拿起粉笔不停歇地写着。

【assumex3+y3+z3=k>0,|x|>|y|>|z|≥√k,k≡±3(mod9)cubefree.】

【k-z3=x3+y3=(x+y)(x2-xy+y2)】

【defined:=|x+y|sothatzisacuberootofkmodulod.】

↑返回顶部↑

书页/目录