第301章 最强太阳能(2 / 3)
很常见。
姜余之所以要跟曹德旺合作,除了他人品奇佳外,最主要还是市场需求量越来越大了。
而且现在早做准备,对以后垄断全球市场大有好处。
液晶面板就不说了,这是一个行业风口,抢先战队是必须的。
随着汽车和移动手提电脑越来越普及,家用电脑和电视采用液晶屏乃大势所趋。
在液晶面板方面,姜余旗下公司注册的专利,跟岛国那些电子企业加起来不相上下。
在不久的未来,双方比拼的就是制造工艺和产能了,姜余现在提前布局,还不算晚……
……
姜余另外一个项目就是太阳能。
他这个太阳能项目,可不同市面上其他的太阳能科技。
准确的来说,他现在准备使用的太阳能面板,既不是传统意义上的晶硅,也不是吹得很玄乎的钙铁矿电池。
太阳能面板是指利用半导体材料在光照条件下发生的光生伏特效应,将太阳能直接转换为电能的器件,是诸多太阳能利用方式中最直接的一种。
目前市面上的太阳能电池分为非晶硅和晶体硅类。
晶体硅类太阳能电池,有机薄膜太阳能电池,钙钛矿太阳能电池等等。
其中晶体硅又可以分为多晶硅和单晶硅。
单晶硅太阳能电池的光电转换效率为15%左右,最理想的达到了惊人的24%。
这是所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。
多晶硅太阳电池的制作工艺与单晶硅太阳电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右。
从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。
现在欧美发展的主要还是多晶硅太阳能电池。
虽然发电效率不怎么样,但能够带动当地科技公司的发展。
当然,也可以为当地政府俘获大量的绿色环保选民。
(后面我会重点介绍)
钙钛矿太阳能电池,一种钙钛矿结构的有机太阳能电池的转化效率或可高达22.1%,能大幅降低太阳能电池的使用成本。
这种材料的成本非常低,但是性能极其不稳定,使用寿命得不到保证,现在还没大规模的推广。
如果只用个一两年,就崩坏了,那搞毛啊,还不得亏死。
有机薄膜太阳能电池是利用导电聚合物或小分子有机材料实现光的吸收和电荷转移。
按结构,可分单层太阳能电池、双层太阳能电池和本体异质结太阳能电池。
主要由有机材料、透明电极、金属电极、基底材料等组成。
最近吹得玄乎其乎的“发电玻璃”的就是这种玩意儿。
它又叫碲化镉太阳能电池,它并不是什么新颖的发明,不是真正意义上让玻璃发电。
它只是在两块普通玻璃之间,均匀的涂抹一层4微米厚的碲化镉光电材料,使原本绝缘的普通玻璃变成了可导电的导体。
换句话说,发电的是薄膜而不是玻璃,这种技术是薄膜太阳能电池技术中的一种,在国际上早已实现量产。
严格的来说,碲化镉太阳能电池既非刚刚问世,也并非于最近有突破性进展。
早在80年代初,国内和国外都已经开始研究这一课题90年代初岛国就有量产了。
这技术虽然还可以,但转化率太低了,实际转换率只有11%左右。
姜余要拿出来的太阳能电池技术,比这些传统意义上的技术,相差几个档次。
他们是玄武研究院和东方矿业共同研究出来的最新高分子有机太阳能电池。
这种太阳能电池的制造方法跟有机膜太阳能电池很类似,但里面的玻璃制作材料和高分子材料完全不一样。
这种太阳能电池,才是真正的“发电玻璃”。
不同于碲化镉有机膜电池所采用的两块普通玻璃,“发电玻璃”迎光的那一面玻璃是一块真正的可导电的导体。
这一面玻璃里面加入了稀土元素“钇”和“锂”,使它是具有了高温超导、高折射率的玻璃。
当然,要想这种玻璃能够吸收太阳能发电,还必须在背后的磨砂面涂一层5微米的高分子复合材料。
这种复合材料的发明灵感是从海藻中和绿色植物中得到的。
植物全身都是由化学元素组成的,化学反应可以产生电流,这是人们已经证明了的事实。
所以,在一定条件下,植物是可以发电的,经长期实验证明了这的确可行。
只是不同的植物发电的电流强度和时间的长短不同罢了。
经过玄武研究院这几年的研究,海藻是利用太阳能效率最高的植物。
海藻中的叶绿素,藻红蛋白,藻蓝蛋白吸收各种红绿蓝光的特性,大范围吸收阳光。
而现在的太阳能电池,基本只能吸收部分红外线而产生电能。
所以,理论上海藻中的蛋白可以吸收绝大部分光谱中的光辐射,产生的
↑返回顶部↑